МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Комитет образования, науки и молодежной политики Волгоградской области

Департамент по образованию администрации Волгограда

Муниципальное общеобразовательное учреждение «Средняя школа № 130 Ворошиловского района Волгограда»

PACCMOTPEHO	СОГЛАСОВАНО	УТВЕРЖДЕНО
Методический совет Протокол № 1 от 29.08.2024 г.	Заместитель директора	Директор МОУ СШ № 130:
	по УВР:	
		О.Н.Черненко
	Ерастова А.В.	Приказ № 247 от 30.08.2024 г

РАБОЧАЯ ПРОГРАММА учебного курса «Астрономия и космос» для обучающихся 11 класса

Оператор ЭДО ООО "Компания "Тензор"

Астрономия в российской школе всегда рассматривалась как курс, который, завершая физико-математическое образование выпускников средней школы, знакомит их с современными представлениями о строении и эволюции Вселенной и способствует формированию научного мировоззрения.

Курс астрономии призван способствовать формированию современной научной картины мира, раскрывая развитие представлений о строении Вселенной как одной из важнейших сторон длительного и сложного пути познания человечеством окружающей природы и своего места в ней.

Особую роль при изучении астрономии должно сыграть использование знаний, полученных учащимися по другим естественнонаучным предметам, в первую очередь по физике.

Материал, изучаемый в начале курса в теме «Основы практической астрономии», необходим для объяснения наблюдаемых невооруженным глазом астрономических явлений. В организации наблюдений могут помочь компьютерные приложения для отображения звездного неба. Такие приложения позволяют ориентироваться среди мириад звезд в режиме реального времени, получить информацию по наиболее значимым космическим объектам, подробные данные о планетах, звездах, кометах, созвездиях, познакомиться со снимками планет.

Астрофизическая направленность всех последующих тем курса соответствует современному положению в науке. Главной задачей курса становится систематизация обширных сведений о природе небесных тел, объяснение существующих закономерностей и раскрытие физической сущности наблюдаемых во Вселенной явлений. Необходимо особо подчеркивать, что это становится возможным благодаря широкому использованию физических теорий, а также исследований излучения небесных тел, проводимых практически по всему спектру электромагнитных волн не только с поверхности Земли, но и с космических аппаратов. Вселенная предоставляет возможность изучения таких состояний вещества и полей таких характеристик, которые пока недостижимы в земных лабораториях. В ходе изучения курса важно сформировать представление об эволюции неорганической природы как главном достижении современной астрономии.

Целями изучения астрономии на данном этапе обучения являются:

- осознание принципиальной роли астрономии в познании фундаментальных законов природы и формировании современной естественнонаучной картины мира;
- приобретение знаний о физической природе небесных тел и систем, строении и эволюции Вселенной, пространственных и временных масштабах Вселенной, наиболее важных астрономических открытиях, определивших развитие науки и техники;
- овладение умениями объяснять видимое положение и движение небесных тел принципами определения местоположения и времени по астрономическим объектам, навыками практического использования компьютерных приложений для определения вида звездного неба в конкретном пункте для заданного времени;

- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний по астрономии с использованием различных источников информации и современных информационных технологий;
- использование приобретенных знаний и умений для решения практических задач повседневной жизни;
 - формирование научного мировоззрения;
- формирование навыков использования естеи особенно физико-математичественнонаучных ских знаний для объективного анализа устройства окружающего мира на примере достижений современной астрофизики, астрономии и космонавтики.

Изучение курса рассчитано на 35 часов. При планировании 2 часов в неделю курс может быть пройден в течение первого полугодия в 11 классе. При планировании 1 часа в неделю целесообразно начать изучение курса во втором полугодии в 10 классе и закончить в первом полугодии в 11 классе.

Важную роль в освоении курса играют проводимые во внеурочное время собственные наблюдения учащихся. Специфика планирования этих наблюдений определяется двумя обстоятельствами. Во-первых, они (за исключением наблюдений Солнца) должны проводиться в вечернее или ночное время. Во-вторых, объекты, природа которых изучается на том или ином уроке, могут быть в это время недоступны для наблюдений. При планировании наблюдений этих объектов, в особенности планет, необходимо учитывать условия их видимости.

СОДЕРЖАНИЕ, РЕАЛИЗУЕМОЕ С ПОМОЩЬЮ ЛИНИИ УЧЕБНИКОВ

11 класс (35 ч, 2 ч в неделю) 10—11 классы (35 ч, 1 ч в неделю)

Предмет астрономии (2 ч)

Астрономия, ее связь с другими науками. Роль астрономии в развитии цивилизации. Структура и масштабы Вселенной. Особенности астрономических методов исследования. Наземные и космические телескопы, принцип их работы. Всеволновая астрономия: электромагнитное излучение как источник информации о небесных телах. Практическое применение астрономических исследований. * 1 развития отечественной космонавтики. Первый искусственный спутник Земли, Ю. А. Гагарина. Достижения современной космонавтики.

Основы практической астрономии (5 ч)

Звезды и созвездия. Видимая звездная величина. Небесная сфера. Особые точки небесной сферы. Небесные координаты. Звездные карты. Видимое движение звезд на различных географических широтах. Связь видимого расположения объектов на небе и географических координат наблюдателя.* Кульминация светил. Видимое годичное движение Солнца. Эклиптика. Видимое движение и фазы Луны. Затмения Солнца и Луны. Время и календарь.

¹ Звездочкой помечен материал, который более подробной дан в электронной форме учебника.

Строение Солнечной системы (2 ч)

Развитие представлений о строении мира. Геоцентрическая система мира. Становление гелиоцентрической системы мира. Конфигурации планет и условия их видимости. Синодический и сидерический (звездный) периоды обращения планет.

Законы движения небесных тел (5 ч)

Законы Кеплера. Определение расстояний и размеров тел в Солнечной системе. Горизонтальный параллакс. Движение небесных тел под действием сил тяготения. Определение массы небесных тел. Движение искусственных спутников Земли и космических аппаратов в Солнечной системе.

Природа тел Солнечной системы (8 ч)

Солнечная система как комплекс тел, имеющих общее происхождение. Земля и Луна — двойная планета. Космические лучи.* Исследования Луны космическими аппаратами. Пилотируемые полеты на Луну. Планеты земной группы. Природа Меркурия, Венеры и Марса. Планеты-гиганты, их спутники и кольца. Малые тела Солнечной системы: астероиды, планеты-карлики, кометы, метеороиды. Метеоры, болиды и метеориты. Астероидная опасность.

Солнце и звезды (6 ч)

Излучение и температура Солнца. Состав и строение Солнца. Методы астрономических исследований; спектральный анализ. Физические методы теоретического исследования. Закон Больцмана. Источник энергии Солнца. Атмосфера

Солнца. Солнечная активность и ее влияние на Землю. Роль магнитных полей на Солнце. Солнечно-земные связи.*

Звезды: основные физико-химические теристики и их взаимосвязь. Годичный параллакс и расстояния до звезд. Светимость, спектр, цвет температура различных классов звезд. фект Доплера. Диаграмма «спектр — светимость» («цвет — светимость»). Массы и размеры звезд. Двойные кратные звезды. Гравитационные волны.* Модели звезд. Переменные и нестационарные звезды. Цефеиды — маяки Вселенной. Эволюция звезд различной массы. Закон смещения Вина.

Наша Галактика — Млечный Путь (2 ч)

Наша Галактика. Ее размеры и структура. Звездные скопления. Спиральные рукава. Ядро Галактики. Области звездообразования. Вращение Галактики. Проблема «скрытой» массы (темная материя).

Строение и эволюция Вселенной (2 ч)

Разнообразие мира галактик. Квазары. Скопления и сверхскопления галактик. Основы современной космологии. «Красное смещение» и закон Хаббла. Эволюция Вселенной. Нестационарная Вселенная А. А. Фридмана. Большой взрыв. Реликтовое излучение. Ускорение расширения Вселенной. «Темная энергия» и антитяготение.

Жизнь и разум во Вселенной (2 ч)

Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные

органические соединения в космосе. Современные возможности космонавтики и радиоастрономии для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании.

Примерный перечень наблюдений

Наблюдения невооруженным глазом

- 1. Основные созвездия и наиболее яркие звезды осеннего, зимнего и весеннего неба. Изменение их положения с течением времени.
 - 2. Движение Луны и смена ее фаз.

Наблюдения в телескоп

- 1. Рельеф Луны.
- 2. Фазы Венеры.
- 3. Mapc.
- 4. Юпитер и его спутники.
- 5. Сатурн, его кольца и спутники.
- 6. Солнечные пятна (на экране).
- 7. Двойные звезды.
- 8. Звездные скопления (Плеяды, Гиады).
- 9. Большая туманность Ориона.
- 10. Туманность Андромеды.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения астрономии на базовом уровне ученик должен

знать/понимать

• смысл понятий: геоцентрическая и гелиоцентрическая система, видимая звездная величина, созвездие, противостояния и соединения планет, комета, астероид, метеор, метеорит, метеороид, планета, спутник, звезда, Солнечная система, Галактика,

Вселенная, всемирное и поясное время, внесолнечная планета (экзопланета), спектральная классификация звезд, параллакс, реликтовое излучение, Большой Взрыв, черная дыра;

- смысл физических величин: парсек, световой год, астрономическая единица, звездная величина:
 - смысл физического закона Хаббла;
- основные этапы освоения космического пространства;
- гипотезы происхождения Солнечной системы;
- основные характеристики и строение Солнца, солнечной атмосферы;
- размеры Галактики, положение и период обращения Солнца относительно центра Галактики:

уметь

- приводить примеры: роли астрономии в развитии цивилизации, использования методов исследований в астрономии, различных диапазонов электромагнитных излучений для получения информации об объектах Вселенной, получения астрономической информации с помощью космических аппаратов и спектрального анализа, влияния солнечной активности на Землю;
- описывать и объяснять: различия календарей, условия наступления солнечных и лунных затмений, фазы Луны, суточные движения светил, причины возникновения приливов и отливов; принцип действия оптического телескопа, взаимосвязь физико-химических характеристик звезд с использованием диаграммы «цвет — светимость», физические причины, определяющие равновесие звезд, источник энергии звезд и происхождение химических элементов, красное смещение с помощью эффекта Доплера;

- характеризовать особенности методов познания астрономии, основные элементы и свойства планет Солнечной системы, методы определения расстояний и линейных размеров небесных тел, возможные пути эволюции звезд различной массы;
- находить на небе основные созвездия Северного полушария, в том числе: Большая Медведица, Малая Медведица, Волопас, Лебедь, Кассиопея, Орион; самые яркие звезды, в том числе: Полярная звезда, Арктур, Вега, Капелла, Сириус, Бетельгейзе;
- компьютерные • использовать приложения для определения положения Солнца, Луны и звезд на любую дату и время суток для данного населенного пункта;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для понимания взаимосвязи астрономии с другими науками, в основе которых лежат знания по астрономии; отделения ее от лженаук; оцениваинформации, содержащейся в сообщениях СМИ, Интернете, научно-популярных статьях.